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A NEGOTIATION PROCESS IMPLEMENTING 

THE NASH BARGAINING MODEL 

Part II 

Tokio Suzuki 

In Suzuki (1989), a general payoff set was introduced, on the basis 

of Smale (1974a) This set 1s compact in R' but not necessarily 

convex. A bargammg model was then constructed, which is a 

generalized version of the noncooperative model in Nash (1953) and 

based on Smale (1974b) Although still a one shot game, it was 

proved that under some regularity conditions, there are a fimte 

number of extended Nash solutions. A generic property of the 

fmiteness was also proved. That 1s, each element of an open and 

dense subset of the parameter set gives a fm1te number of extended 

Nash solut10ns. By using these results, the negotiation model in 

Rubinstein (1982) was studied 

The purpose of the present article is to examine the Rubinstein 

model in detail and to make a further discussion. Apart from the 

fact that this model 1s an infinite horizon game 1mplementmg the 

Nash model in a noncooperative way, it was shown that the 

subgame perfectness guarantees the uniqueness of the outcome for 

most cases discussed in the Rubmstem’s article, where preferences of 

the players satisfy some specific conditions. These results were 

applied to an asymmetnc bargaining model m Shaked and Sutton 

(1984), where a simple existence theorem for the Rubinstein model 

was also supplied. Another extension was made by Bmmore, where a 

random move and a“not steadily shrinkmg cake”case are involved. 

The discussion 1s contamed in Chapter 5 of Binmore and Dasgupta 

(1987). 
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It should be noted, however, that these models can have some 

problems 1£ more than two players are negotiatmg, or mformation is 

not complete, as summarized in Chapter 7 of van Damme (1987). 

Concermng the Independence of lrrelevant Alternatives, it is obvious 

that the Rubmstem model (and its immediate derivatives) can not be 

compatible with this controversial ax10m, because the solution 

depends on the process and which player moves first However, as 

noted at the end of the Introduction of Bmmore and Dasgupta 

(1987), the discussion could survive in a modified form 

1. The Rubinstein Model 

Two players, 1 and 2, are bargaming on the partition of a pie, or 

formally S= [O, 1]. Each player makes an offer alternately, and the 

offer can be accepted (y) or rejected (n) by the partner This process 

continues until an agreement, if any, 1s attamed. No act10n is subject 

to any previous action It is also assumed that no uncertainty is 

involved. 

The set F of all strategies of the player who starts the bargammg 

is defined in the following way. 

f= {f'}, tEN, belongs to F 

if and only if 

f'ES, 

f': s＞－＞ー今 S, for t odd, and 
f'. S＇→｛ y, n}, for t even. 

N is the set of natural numbers, and S' 1s the Cartesian product of S 

with itself t times. Similarly, the set G of all strategies of the player 

who is to respond to the first move of the partner 1s defined: 

Eニ｛g'},tEN, belongs to G 

if and only 1f 

g': S＇→｛ y, n}, for t odd, and 
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g': s•－•一歩 S, for t even. 

F×G can be considered as the set of strategy pairs, where player 

1 starts the bargaining Take (f, g)EF×G, and suppose that an 

agreement is reached at t=T (f, g), and player 1 receives S=D (f, g) 

ES. Player 2 receives 1-s by definition D (f, g) is called the 

par!Ition induced by (f, g). The outcome funct10n P is defined by: 

P:F×G→ S×N U{(O, oo)} 
such that 

P(f, g)=(D(f, g), T(f, g)), if T(f, g)<oo, 

otherwise 

P(f, g)=(O, oo) 

(0, oo) means a perpetual disagreement. The case where player 2 

starts the bargaining can be defined in a similar manner It should 

be noted that by smoothing the maps f' and ピ， tEN,and imposing 
the Whitney topology into F and G, as discussed in Suzuki (1989), a 

generic stability of outcomes could be obtained This will be studied 

m another ar!Icle. 

Concerning the preference of player 1, 1=1, 2, Rubinstein makes 

the following assumpt10ns 

As•umpt10n 1 

Player i has a complete, reflexive, and transitive preference 

relation on S×NU {(O, oo)) which also satisfies 

For all r, sES, t, t,, t,EN, 

a) If r.> s" then (r, t) P1 (s, t), 

b) If s,>O and t,>t., then 

(s, t.) Pi (s, t,) Pi (0, oo), 

c) (r,t,)Ri(s,t,+1) 

if and only if 



112 

(r, t,) Ri (s, t,+ l); 

d) given sES, t, t,EN, 

the sets {rES I (r, t,) Ri (s, t,)) 

and {rES I (r, t,J Ri (0, oo)) 

are closed in S, 

e) if (s＋α，1) Ii (s, 0), 

(s’＋α’， 1) Ii (s’，。）， and s，くs’h

then α1三二α’l

Concernmg the notation, r, is the portion of S for player 1, i.e. 

r,=r, and r,=1-r, etc aR1b means that a is at least as good as b 

for player i aPib means aR1b but not bRia alib means aRib and 

bRia It will be seen that e) is not indispensable for a general 

discussion From c), the expression (r, T) R1 (s, 0) can be used for 

(r, T + t) Ri (s, t). 

Two models are then presented by Rubinstein, where the 

preferences satisfy these assumpt10ns: 

1) Fixed bargainmg costs 

Player i, i=l, 2, has a number c, such that 

(r, t ,) R1 (s, t,) if and only if 

(r I一C,t ，）二三（s,-c,t,)
2) Fixed discounting factors 

Player 1, 1=1, 2, has a number O< O' I三lsuch that 

(r, t.) Ri (s, t,) if and only if 

r,O'＂二三s,O'匂

Defm1tion 1 

(fへgつεF×Gis called a Nash Equilibrium if there is no fEF 
such that P (f, g勺P,P(fへE勺， andno gEG such that P (f', g) P ,p 
(f本，g*). 

As shown by Rubinstein, this definition is too weak, because every 
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sES can be an equilibrium partitIOn As a stronger concept, 

Rubinstem adopts the subgame perfectness A detailed discusswn of 

this concept can be found in Chapters 6 and 8 of van Damme 

(1987). 

Take any vector (s ', , sT）巨STand f EF f I s' sT is defined to be 

a strategy derived from f after the history of offers (s ', ., sT). 

For example, 1f T and t are odd: 

(f I s' ST）ミ（r' r') 
= fT+>(S' . ST，いが）

It should be noted that 1f Tis odd, f Is' . sT EG g [ s' .. sT can be 

defined in a similar manner. 

Definition 2 

(fてg場：）EF×Gis called a Perfect Eqmhbnum (PE) if for all (s＇”－ 
sT), T odd: 

1) there is no fEF such that 

P(f勺s' sT, f)PJ'(f勺s' sT, g* [ s' sT); 

2) if g*' (s人u sT)=y, there is no fEF such that 

P(f* Is' sT, f)P,(sT, O); 

3) if g*'(s' sT)=n, then 

P(f* Is' .. sT, g* Is' sT)R,(sT, O); 

and if T is even-

4) there is no fεF such that 

P(f, g* I s' .. sT)P,P(f本Is' sT, g* Is' sT), 

5) if f*'(s' sT)=y, there is no fEF such that 

P(f, g* Is' ... sT)P,P(sT, 0), 

6) if f*'(s' , ST）ニn,then 

P(f本Is' sT, g* Is' sT)R.(sT, 0) 
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Def me: 

A={sES I there 1s a PE (f, g)EFXG such that 

s=D(f, g)} 

B={sES I there is a PE (g, f)EG×F such that 
s=D(g, f)} 

On the basis of these settmgs, the followmg lemmas are proved 

Lemma 1 

Let aEA For all bES such that b>a, there 1s cEB such that 

(c, l)R,(b, 0). 

Lemma 2 

For all aEB and all bES such that bくa,there 1s cεA such that 

(c, l)R,(b, 0). 

Lemma 3 

Let aEA. Then for all bES such that (b, l)P,(a, 0), there IS cEA 

such that (c, 1) R1(b, 0). 

Lemma 4 

Let a巨B Then for all bεS such that (b, l)P1(a, 0), there is cEA 

such that (c, 1) R,(b, 0). 

Define. 

ム＝｛（x,y)ES×S I y is the smallest number such that (y, O)R, 
(x, 1), and x is the largest number such that 

(x，。）R,(y,1)) 

ム1=7'1(.i'.),where m: S×5 一歩 5

such that掴（x,y) I ー令 x;

ム，＝＂＇（ム）， where,,,; S×S ー令 S

such that "'' (x, y) I 一歩 y.
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Then it is proved that if (x, y) Eム， thenx巨Aand yEB (Propos1J 

tion 1), and thatム 1snonempty (Proposition 2). However, m order 

to reach the conclus10n that A＝ムb and B= 6" a further discussion 

must be made 

2. The Structure ofム

By defimtion，ム isthe whole collection of (x, y)E S×S such that 

y=d,(x) and da(d,(x))=x, where. 

d, s ー~ s 
such that 

ふ（x)=Min{yES I (y，。）R,(x,1)) 
and 

da S ー~ s 
such that 

da(y)=Max {xES I (x，。）R,(y,1)) 

From assumption 1 d), d, and d, are well def med and contmuous 

Assumption 1 a) gives that the maps are increasing, and atnctly 

increasing where d,(x)>O and d,(y）く1.The contmmty makesム

closed m S×S. Recalling that S is compact，ム 1sin fact a compact 

subset of S×S However, 6 is not necessarily connected, unless, for 

example, d, and d, are linear on 6, andム， respectively. Assump 

tion 1 e) IS used to show that every point ofム hasthe same 

distance from the diagonal of S×S So without this assumption, 

Proposit10n 3 by Rubinstein can only state thatム isclosed. The 

proof of Propos1t10n 4 should also be corrected, because it 1s based 

on the connectedness ofム

Proposit10n 4 

If aEA, then a Eムhand if bE B, then bEム2
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Proof 

Consider first 6, and A. From Proposition l，ム， is a subset of A. 

Sinceム・＝π，（ム），ム， is compact, so that x,=Minム， and x,=Max 

ム， exist. Lemma 1 gives that x,=Jnf A, and Lemma 3 gives that 

x ,=Sup A, as shown by Rubinstein. Ifム isnot connected, a further 

discusswn is needed. 

Suppose that there is x＊εA which does not belong to ム•· Then 

x.くx•<x,, and there ts a neighborhood Nx* in S such that the 

intersectwn of N x* and 6, is empty By definition, there is (f*, g*) 

EF×G such that D(f*, g*)=x*, and it is possible to find (fてg*)
which also satisfies D (f* b, gキ b)=d,-'(b)for all b E S, b>x本

Then if d,(d.(x• ））くxへ the Rubmstein’s proof of Proposition 4 also 

holds locally, by usmg s’＝Sup {A n [O, x・本＋αJ},where α＞O is 
chosen to make x* ＋αENx• 

If d,(d,(x* ))>x大 a similar conclusion can be derived by using 

t'=Inf{A n ［がーα］｝
Therefore, It can be concluded that there is no x* EA which does 

not belong to 6, Similarly, there is no y*EB which does not belong 

toム2

This completes the proof 

Bibhography 

Binmore, K. & P. Dasgupta (eds.), 1987, The Econom.cs of Barga;nfog (Blackwell, 

Oxford). 

Damme, E. van, 1987, Stability and Pe柿ctionof Nash Equilibria (Springer, Berlin). 

Nash, J.F., 1950，“The Bargaining ProblemヘE心onometrica18, 155-162. 
Nash, J.F., 1953，“Two-Person Cooperative Games”， Econometrica 21, 128-140. 

Rubinstein, A., 1982，“Perfect Equilibrium in a Bargaining Model”， Eccnometrica 

50, 97 109. 

Shaked, A & ). Sutton, 1984，“Involuntary Unemployment as a Bargaining 

ModelヘEconometrica52, 1351 1364. 
Smale, S., 1974a，“Global Analysis IV”， Journot of M othemotica/ Economics 1, 119← 

127. 

Smale, S., 1974b，“Global Analys.s VヘJou問 o/of M athemat"a/ Economics 1, 213 



叶 － H m Z E F 回 国 司 酬 盲 目 白 山 口 肉 富 。 弘 巳 口 吋

N N H  

凹 E E E 、
J ア E 昌 也
Z 〉 Z o m O R E －。ロ H M g n o m m －5 1 0 E O E E m Fぬ

Z E o －E ヌ H J V 言 語 旦 t p a E H H E 2 2 M∞ （ 同 ） － H E t H N吋

Z 釦 m u F ∞ 凶 内 側 巴 ロ HHM関



118 

ナッシュ交渉モデルの補完に関して：第2部

〈要約〉

鈴木時男

本稿においては Suzuki(1989）に引き続いて Rubinstein(1982）で展開さ

れている交渉の数理モデルが考察の対象となっている。

第l節ではこの Rubinsteinmodelが詳しく解説されており，特に

subgame perfectnessの概念が単なる NashEquilibriumを補完する重要

な役割lを担っていることが示される。

第2節では上記 Rubinsteinの論文中のわ叩osition4の証明が問題を

含むことカ吋齢商され，ムが connectedでない場合でもおなじ結論が導か

れるとの追加証明がなされる。

プレーヤーの戦略の集会， FとG，を C'関数空間とし， C'Whitney 

topologyを入れて構造安定性などを導く試みは稿を改めて行う予定で

ある。


