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The purpose of th担 paper担 toinvestigate under what conditions 

a reasonable number of elements in a p紅白neterspace yield a finite 

number of equ副briawhich correspond con泊四ouslyto the change of 

the p町田neters.The finiteness of也eequihbria will be useful in compara-

世vestatics，四d也econtmuous correspondence gives a structural stab出ty

to the model. 

These problems are studied, using a sunple n-person noncooperatlve 

g町neas由ebasic setting・
This discussion is based on results in Smale (1974a and b), v叩

Damme (1983), and Suzuki (1987). 

1. Basic Settings 

A game is described by payoff functions Ui・Rn→R，阻dpure strategy 
vectors hεRm1, i = 1～n. n is吐ienum her of players，皿dmi is that of 
pure strategies for player i. Both are some given numbers. Ui is as日med

to be C1，四dUj阻 dbi are allowed to change for all i. The whole collec-

tion of Uj is defmed by C1 (Rn, R), i.e. the space of C1 maps from Rn 

to R. C1 (Rn, R) is endowed with C1 Whitney topology. That is, a 

neighborhood Nh of血eori位lis defined by a continuous map h: Rn→ 
R+, where R+ is the set of strictly positive numbers, such that: 

f e C1 (Rn, R) belongs to Nh 

江田donly正

I f (x) Iく h(x), all x E Rn, and 

II Df (x)llく h(x), all x e Rn. 
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As discussed加 Chapter2 of Hirsch (1976), C1(R", R) with the 

Whitney topology satisfies血eBrure property, i e any countable inter-

section of open皿ddense subsets is dense. If R" is restricted to a 

compact set K, then C1 (K, R) with世tistopology becomes a Banach 

space. 

On the other hand, Rm' is defined as the whole collecl!on of pure 

strategy vectors for player i. 

The par町neterspace of the model is: 

[C1 (R", R)] n x円Rmi

For s加plicity,let A = [C1 (R", R)] 0, Bi = Rmi, and the Cartesian 
product of Bi be B. 

For any biεBi, a mixed strategy Si e Si 1s a probability distnbution 

on bj, where 

Si = {si e(R+ri: si = (si,1, -, Si.mD 

R+ 1s the set of nonnegative real numbers. It should be noted that the 

nonnegative umt simplex Si C阻 beconside日das a compact smoo也

manifold (without boundary) of dirnens10n mi-1. The t四 gentspa田 of

Si at叩ySi is identified with Rmi 1 _ 

GIVen a map Ui and letting bi e Bi and Si e Si be any given element of 

the domain. Take any component句ofbi. and let s1,kj be the corre-
spon必ngprobabili句人古田n由eexpected payoff function Pui is defined 

by. 

PUj: B x S→R 

such that 

Puj(b. s) = ~ s~ Si,kj) u；伺

S is the Cartesian product of Sj, and the summation 1s over all po叩ble
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k = (k1，～， kn). Pui IS c• by construction. An extended barg制 ing
equ出briumis now defined as an analog of the extended pnce equilib-

rium in Smale (1974a). 

2. Res叫白 withFixed u 

Definition 1 

Given u =(u1，～，Un), let σPu;/asi be the partial derivative of Pui wi血
respect to Si. 

De缶四．

世u:Bx  S→円Rmi-1
•=! 

such曲目

'¥ u (b, s) = [ aPu1/as1 (b, s），～，σ・Pun /asn (b, s)] 

For each (b, s)e'l'u-1 (0), s is said to be祖 extendedbargaining 

eqmlibrium under (u, b). The whole collect10n of such s is denoted 

by Eex (u, b). 

Next, the regular value血eorem,chscussed m Chapter 1 of Hrrsch 

(1976), gives血efollowing lemma. 

Lemma I 

Suppose that the C1 map世uhas 0 as a regular value. That包，

'l'u-1(0) is either empty, or for any (b, s）ε'l'u-1 (0), D申u(b, s) is 

surjective. If this inverse image is nonempty, then ii is a C1 submanifold 

of B x S, and dim 'l'u 1 (0) = dim B. 

Remark 

Sumlar results are found in Chapter 2 of van Damme (1983). Con-

ceming出eexistence of an equtlibrium, see Chapter 10 of Harsanyi 

(1977). 
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Definition 2 

Suppose出atEex (u0, b0) is a finite set with k elements. Then this 

set is said to be stable in A×B if there are a neighborhood N of (u0, 

b0) and k continuous functions αi N→S, I= 1～k, such that for any 
(u, b）εN，α； (u, b）εEex (u, b), and町（u,b）寺町（u,b) if iキj.
When u is fixed，血estability in B is defined in也esame way. 

Theorem 1 

Suppose that u €A satisfies the cond1llon m Lemma I F皿 u.Then 

there is an open and dense subset 8 of B such that for any b E 8, Eex (u, 

b) is finite and stable加 B.

Proof 

Let円： Bx S→B be the pr句ection.
n1申江1(0) is a C1 map, and dim宮正1(0) -dim B = 0. Therefore, the 

Sard theorem states也atthe set 8 of regular values is open and dense. 

The inverse function theorem 1s also applicable, and the restric世onis a 

proper map. 

So for any bε8, Eex (u, b) must be a finite set with k elements. 

There are also k C' diffeomorphisms between U; and V;, where V; is 

a neighborhood of b, U; a neighborhood of some SE Eex (u, b), i =I～ 
k, and U; and Uj are disjoint if iキj.

On the o也erhand, each V; can be a subset of a compact set K 

M = （門｜曹σ1(0)) 1 (K) is compact. Let V be the intersec垣onofV;, U 

血eunion of U;, i = I～k The following set difference gives a neighbor-

hood with the desired properザ

V＼（円I'l'u-1 (0））例＼U)

Remark 

Like Smale (1974b), the discussion using the coordinate space of 

S;, i = 1～n, w血尿vesin叫百出回Its
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3. Re月sul白withVariable u 

The discussion here utilizes the results in Chapter 4 of Abraham and 

Robbin (1967) and Chapter 4 of Suzuki (1987). 

Let A, X, Y be C' manifolds with finite or infinite dimension, r ~ 0. 

A C' manifold wi也infinitedimension means that the manifold is a C' 

Banach manぜold.

Consider any mapρ：A→C' (X, Y). This map is called a C' represen-
tation if the following evaluation map is C'. 

evρAx X→Y 

such that 

evp (a, x) ＝ρa (x) 

Now Jet A, X, Y be C1 manifolds with fimte or泊白nitedimension. 

In addition, Jet W be a C1 submanifold of Y, K a compact subset of X, 

and ρ・A→C1 (X, Y) a C1 rep田sentation.Then A Kw is an open subset 
of A, where: 

AKw = {aeA：ρa is transversal to W at every x e K} 

W can be a single element ye Y, i.e a zero dimenSlona! submanifold. 

In this case, the tran町ersality1s eqmva!ent to the condition that pa has 

y田 aregular value 

Next, a density吐ieoremis also available 

Define: 

Aw = {a e A : pa is transversal to W} 

Suppose that: 

!) X has finite dnnensrnn n, and W has fmite codimension q in Y. 

2) A and X are second countable. 
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3) r > max (0, n －φ 
4) The evaluation map ev，ρIS transversal to W. 

Then Aw is residual, i.e. Aw is the countable intersection of open and 

dense subsets of A. From the Baire property, Aw is dense in A. 

Lemma2 

Let Y be the set of (u, b）εA x B such that也emap世u,bhas0 as a 

目別larvalue, where 'ltu,b(s) ＝官u(b, s）五orall S€ S.百四 parameter
space A x B and the map中uwere defined in the previous discussion. 
Then Y is open and dense in A x B. 

Proof 

First, consider the openn悶.Take any (u0, b0) € Y, where u0 = (u,0, 

～，un°) and b0 = (b1°，～，bn°). 
Let K; be any compact set containing b;0 It ts also po田市leto choose 

K; which is a smooth manifold of dimension mi-!. GIVen K;, the 

dom剖nofu;, 1e. R", c出1also be restricted to some compact smooth 

mamfold k’of dimension n, for all i Let A* be A with世田 restncted

domain, and K the Cartesian product ofK;, i = 1～孔

Then the following map becomes a C1 representation: 

'It* A* x K→cics, iO Rm← 

such that 

官，＊u*,b(s) ＝申u*(b, s), all s€S 

Since S is compact, the openness theorem states that there is a neigh-

borhood N* of (u•o, bO) in A* x K such that for any (u*, b）εN穴
、li*u*,b h拙 0as a regular value. 
Now the following map f is easily shown to be continuous, where the 

domain and the codomain are endowed with the C1 Whitney topology 

f: C1(R", R）→ci(K’， R) 
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such that 

f Uj→Uj I K’ 

Therefore, there is a neighborhood N of (u0, b0）加Ax B with the 

desired property, which proves也eopenne田 ofY.

Next, consider the denseness of Y Let bεB be any element. 

Define: 

A(b)= {ueA：申u,bh描 0as a regular value } 

Then it follows from the p田viousdiscussion that A (b) is open in A. 

The density theorem is also applicable to A(b〕withthe restricted do-

m田n Since f : Ui→Uj I K’1s also an open map, A (b) is concluded to 
be dense in A. 

Now let B’be any countable and dense subset of B. For example, let 

D be the set of rat10na! numbers, and B' the Cartesian product of Dmi, 

i = I～n. Then from the Baue property, the countable intersection of 

A(b), be B’，is dense in A. 
In addition, the Cartesian product of the intersec!Ion and B’must be 

a subset of Y. This gives血edenseness of Y皿dcompletes the proof. 

By construction, Eex (u, b), (u, b) eY, is a finite set. The stability is 

given by the following lemma. 

Lemma3 

The田 isan open and dense subset 0 ofY suぬ也atfor every (u, b）ε 

O,Eex (u, b)is stable in Y. 

Proof 

The statement is based on Sma!e's version of the Sard theorem, dis-

cussed in Smale (1965). Since Y is open in A X B, Y is exp回目edas a 

union of the sets Y1,k x Y2,k, where Y1,k担openin A, and Y 2,k担

open m B. It is also possible to assume也atfor each k, Y2,k is bounded. 
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Since the stabtlity is a lo国Iquestion, the discussion will be restncted to 

Y1,kX Y2,k・Forsimplicity, the subscript k will be omitted. 
Smee Y 2 is bounded, the domain of u;, i = I～n, can be restricted 

to a compact smooth manifold of dimension n. Let Y1* be Y 1 with the 

restricted domam 

Defme・ 

申場権： Y,*x Y, x s→内Rm←
;=1 

such由at

世＊＊(u*, b, s) ＝申u*(b, s) 

Clearly, this C1 map h田 O田 aregular value. Then from吐加担ftni白

dimensional version of the regular value theorem, discussed in Chapter 4 

of Ab泊町 andRobbin (1967), （い•）－＇ （めmustbe a C1 submanifold 

ofY円 Y，× S,and co伽（官制）－＇ (0）同ualto ；~， (miー1).

Consider the restric世on「11（骨材）－1(0) of the projection 
円： Y1*xY2xS→Y，＊× Y,. and take any (u*, b, s) of （申＊＊）－＇ (0). 
The derivative D円（u*,b, s) is considered to be the following com-

position: 

p • i ［（官制）－1(O)] (u*,b,s）→ 

[C1 (K川 JnX月Rm;x月Rm;-1
主司 •=l 

→［C' (K＇，め］ nxi~Rmi

［（骨材）－1(O)] (u*,b,s) is the t四 gentspace of血eC1 submanifold at 

(u六b,s), i is the inclusion map, and p is the projection p: （百，s.s）→ 
（五，o).

Keri={O｝，曲目叩geof i is closed in the codomam，叩dthe dimen-

S町出向llow同抑制tspa田 is ；~ （凶ー！）.
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[C' (K’，R)]n x円Rmix円Rmiー1/Imi 
i=l i=l 

n 
i担thusa Fredholm operator whose mdex is －~ (m1-l）ー Onthe other 

h皿 d,Ker pis {O} x門Rmi1，由er叫 eof；~ is closed in the codo-
i=l 

main, and the dinlension of the followmg quotient space is zero. 

[C' (K＇，めJnX ；~ Rmi /Imp 

p is thus a Fredholm operator whose index 1s :!¥ (nu 1 ). Then from the 
d担cu田ionin Chapter 2 of Istratescu (1981)'. ihe composition T • S of 

two Fredholm operators T, Sis a Fredholm operator. The index ofT-S 

is equal to也esummation of the index of T and that of S. 

Therefo日， theindex of D円。へ b,s) is zero at any (uへb,s) of 
（申＊＊r'(0). It can be concluded that the restriction円｜（申＊＊）－1(0) is 
a C1 Fredholm map. Using Smale’s version of the Sard theorem, the 
following result is obt血 ed:

The set of regular values of「11（骨材） 1 (0) is open and dense in 

Y1* x Y,. 

［（い） 1剛山s)and [C1 (K川 JnXi~ Rmi田山pacesof 

[C' (K', R〕］n X円Rmix内Rmiー1.
i=l i=l 

n ' ' 
Since these subspaces have the s田necodinlension ~ R"u-i，血e

i=l 
mfmite diniensional version of the inverse funct10n theorem is apphcable. 

It is also easily seen血atnI （申＊＊〕 1(0〕isa proper map. 
By usmg the open and continuous map f: Ui→Ui I K again, the follow-
mg result is obt担ned:

There is阻 openand dense subset Z ofY1 x Y2 such that for any 

(u, b）εZ, Eex (u, b）担stablein Y1 x Y2. 
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百iiscompletes the proof. 

Therefore, the followmg theorem is obtamed as a s仕aighぜorwardcon-

se司uenceof these results 

Theorem 2 

There is an open and dense subset 8 of A x B such th副 forany (u, b) 

€ 8, Eex (u, b) is stable in Ax B. 
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ゲーム解の有限性と安定性
〈要約〉

鈴木時男

本稿においては数理経済学における均衡概念をめぐる問題が提出され，

基本的な n人非協力ゲームをモデルとして，与えられた条件とその下で

の均衡解との関係が論じられる。特にどのような仮定の下ならば，十分

に多くの初期条件の組み合わせにおいて均衡解の集合が有限個の要素を

持ち，かっその組み合わせの変化に連続的に対応するかが議論される。

パラメータとして個人 l' i = 1～n ，の利得関数と純粋：減略が設定さ

れ，その集合はそれぞれR＂から RへのC＇関数の全体と mi次元のュ－7
IJ y ド空間として表現される。

均衡はナ yシュ解を一般化したものが用いられ，この均衡を与える関

数がゼロベクトルを正則値（regularvalue）として持つことが条件として

提出される。

第 lに，この条件下で均衡解集合の有限性が示きれる。

第2に，パラメータ集合的聞かつ桐密な部分集合が存在し，そのすべ

ての要素がこの正則値の条件を満たす関数を構成することが示される。

第3に，これらの要素に関して均衡解の連続的対応が証明される。

以上町議論はSmale(197 4a and b), van Damme (1983），そしてSuzuki

(1987）の成果に基礎を置いている。


