自然言語量化子を含む文の曖昧性について On the Ambiguity of Sentences with Natural Language Quantifiers

水田 洋子 MIZUTA，Yoko

－国際基督教大学
International Christian University

Keywords
自然言語量化子，曖昧性，スコープ，受身形
natural language quantifier，ambiguity，scope，passive sentence

Abstract

自然言語量化子を 2 つ以上含む文は，量化子のスコープの違いに起因する曖昧性を持つが，更なる曖昧性を持つ場合もある。本稿では，自然言語量化子 most および two を含む文 Most travelers visit two cities とその受身形 Two cities are visited by most travelers の読みの非対称性を示し，議論する。Most ではなく allを使ったもの（All travelers visit two cities）では，能動形と受身形が同様の曖昧性を持ち，文の 2 つの意味は量化子（allとtwo）のスコープの曖昧性に帰着できる。しかし，mostを使ったものでは，受身形 が更に第3の読みをもち，能動形と受身形の読みは非対称となる。それらの読みについて経験的および論理的な観点から議論する。また基本文のバリエーションについての考察および，日本語データとの対照考察も行う。

Sentences with natural language quantifiers（e．g．every，all，most，two，a few）exhibit an ambiguity attributed to the scope ambiguity of the quantifiers used．However，the sentence may have further ambiguity． This paper investigates the readings of the pair Most travelers visit two cities and its passive version Two cities are visited by most travelers and shows the asymmetry between them．The version with all（i．e．All travelers visit two cities and its passive version）share the same ambiguity between the active and passive sentences，which is attributed to the scope ambiguity of the quantifiers all and two．In the case of the sentences in question，however，there is a third reading in the passive sentence．The details of the three readings and their distribution are investigated on empirical and logical bases．The paper also investigates several variations of the basic sentences（e．g．Most of the travelers visited two cities；Most travelers are
attracted to two cities) and discusses the different distribution of the readings. Furthermore, a contrastive analysis with relevant Japanese data is conducted.

1. Introduction

Sentence (1) involves two natural language quantifiers, all and two.
(1) All travelers visit two cities.

This sentence makes a generic statement about travelers. For practical purposes, let us suppose that the sentence describes the situation with travelers to Japan, every year.
Sentence (1) has two equally good readings:
(2) a. All travelers each visit two cities of their choice.
b. There are specific two cities that all travelers visit.
This ambiguity is attributed to the scope ambiguity of the quantifiers all and two. In the reading in (2a), all has a wider scope than two, whereas in the reading in (2b), it is the other way round.

The passive version of (1), which is (3) below, has the same ambiguity, although the reading in (2b) is preferred to that in (2a) unless a specific preceding context is given.
(3) Two cities are visited by all travelers.

When we replace all by most, the situation is different. ${ }^{1}$
(4) a. Most travelers visit two cities.
b. Two cities are visited by most travelers.

The active version (4a) has an ambiguity between (5a) and (5b).
(5) a. Most travelers each visit two cities of their choice.
b. There are specific two cities that (a certain set of) most travelers visit.
For the passive version (4b), however, the readings are nontrivial. Major comprehensive textbooks on semantics (e.g. Allan, 2001; Chierchia \& McConnell-Ginet, 2000; Saeed, 2009) introduce
natural language quantifiers, but do not discuss them in depth. Kearns (2000) introduces a variety of examples of sentences using natural language quantifiers, whereas Keenan and Papemp (2012) provide comparative data of natural language quantifiers. However, there is room for a closer investigation into natural language quantifiers on a logical basis.

In what follows, sentences (4a) and (4b) will be investigated in detail. Specifically, the readings of (4a) and (4b), as well as their variations, are investigated on empirical and logical bases. Also, a contrastive analysis with relevant Japanese data is conducted.

2. Preliminaries

We start by considering the logical formulae for the two readings of the version with all, (1) and (3), repeated here as (6a) and (6b) below. (Henceforth, in the example sentences italics are used for the purpose of highlighting quantifiers.)
(6) a. All travelers visit two cities.
b. Two cities are visited by all travelers.

As a preliminary step, let us consider the following version with some instead of two.
(7) a. All travelers visit some city.
b. Some city is visited by all travelers.

Sentence (7a) and (7b) involve two readings. That is: 1) All travelers visit some city of their choice, and 2) All travelers visit a specific city.

Using logical quantifiers, we get the logical formulae (8a) and (8b), which are accompanied by an informal description.
(8) a. ($\forall \mathrm{Xx}$) [Traveler (x) $\rightarrow(\exists \mathrm{y})[\operatorname{City}(\mathrm{y}) \wedge \operatorname{Visit}(\mathrm{x}$, y)]]

For any x , if x is a traveler then there exists y such that y is a city and x visits y .
b. (ヨy) [City (y) $\wedge(\forall x)[$ Traveler $(x) \rightarrow$ Visit (x , y)]]

There exists y such that y is a city and for any x if x is a traveler then x visits y.
The ambiguity between (8a) and (8b) is attributed to the scope ambiguity of the universal quantifier (V) and the existential quantifier (\exists). That is, the reading is determined by which quantifier has a wider scope than the other.
Now, sentence (6a) and (6b) with two also involve two readings. That is: 1) All travelers visit two cities of their choice, and 2) All travelers visit certain two cities.

Using logical quantifiers, we obtain the logical formulae (9a) and (9b), accompanied by an informal description.
(9) a. $(\forall x)$ [Traveler $(x) \rightarrow\left(\exists y_{1}\right)\left(\exists y_{2}\right)\left[\operatorname{City}\left(y_{1}\right) \wedge\right.$ $\left.\left.\operatorname{City}\left(\mathrm{y}_{2}\right) \wedge \operatorname{Visit}\left(\mathrm{x}, \mathrm{y}_{1}\right) \wedge \operatorname{Visit}\left(\mathrm{x}, \mathrm{y}_{2}\right)\right]\right]$

For any x , if x is a traveler then there exist y_{1} and y_{2} such that y_{1} is a city, y_{2} is a city, x visits y_{1}, and x visits y_{2}.
b. $\left(\exists \mathrm{y}_{1}\right)\left(\exists \mathrm{y}_{2}\right)$ [City $\left(\mathrm{y}_{1}\right) \wedge$ City $\left(\mathrm{y}_{2}\right) \wedge(\forall \mathrm{x})$ $\left.\left[\operatorname{Traveler}(\mathrm{x}) \rightarrow\left(\operatorname{Visit}\left(\mathrm{x}, \mathrm{y}_{1}\right) \wedge \operatorname{Visit}\left(\mathrm{x}, \mathrm{y}_{2}\right)\right)\right]\right]$

There exist y_{1} and y_{2} such that y_{1} is a city, y_{2} is a city, and for any x if x is a traveler then x visits y_{1} and x visits y_{2}.

Using restricted quantifiers 'All' and 'Two', we have the following version of the logical formulae. The notation for a restricted quantifier follows Kearns (2000). Logical formulae (10a) and (10b) correspond to (9a) and (9b), respectively:
(10) a. (All x: Traveler (x)) [(Two y: City (y)) [Visit (x, y)]]

For all x who is a traveler, there exist two y each of which is a city and such that x visits y.
b. (Two y: City (y)) [(All x: Traveler (x)) [Visit (x, y)]]

There are two y each of which is a city and such that for all x who is a traveler, x visits y .

The notations used in (10) are as follows. Restricted quantifiers such as 'All' involve not only a variable such as ' x ' but also the restriction for that variable. In the notation used in (10) above, the item following a colon within the quantifier description gives the restriction for the variable at issue. For example, the representation '(All x: Traveler (x))' indicates a restricted quantification by 'All' over the variable ' x ', and the description 'Traveler (x)' following it gives a restriction for each value for x. In the same format, the representation '(Two y: City (y))' indicates a restricted quantification by 'Two' over the variable ' y ', and the following description 'City (y)' gives the restriction for each y. A restricted quantifier, just like an unrestricted quantifier, is followed by the condition which the restricted quantifier should meet. This condition is indicated within a pair of square brackets.

In the version with restricted quantifiers, the ambiguity between (10a) and (10b) is attributed to the scope ambiguity of the quantifiers 'All' and 'Two'.

Here, quantifiers require a careful treatment. Specifically, 'All' is similar to ' V 'in that one entity is picked out and evaluated at one time. It is not that all entities are taken and evaluated at one time. The same holds for 'Two'. Thus, for (10a), the evaluation procedure is the following: the first entity of traveler is picked out and checked whether it meets the specified conditions, then the second entity of traveler is picked out and checked whether it meets the specified conditions, and so forth. For (10b), it means that the two cities in question (say y_{1} and y_{2}) are each visited by all travelers. In the present case, there is a unique set of 'all travelers' who visit y_{1} as well as y_{2}.

In the next section, we will consider the readings and logical formulae for the sentences, replacing all with most, and see what happens.

3. 'Most travelers visit two cities' and its variations

3. 1 Basic sentences

Below are the sentences we now consider.
(11) a. Most travelers visit two cities.
b. Two cities are visited by most travelers.

As a preliminary step, let us consider the following version with some instead of two.
(12) a. Most travelers visit some city.
b. Some city is visited by most travelers.

Sentence (12a) and (12b) involve two readings. That is: 1) Most travelers visit some city of their choice, and 2) Most travelers visit some specific city. These are analogous to those for (7a) and (7b).

Sentence (11a) and (11b), in contrast, involve three readings. There is one more reading in addition to the two readings analogous to those for (6a) and (6b), the version with all. Let us name the three readings R1-R3 as below. For practical purposes, let us suppose that we consider the travelers to Japan and that there are just one hundred of them every year.
(13) The three readings (R1-R3) involved in (11):
[R1] Most travelers visit two cities of their choice.
e.g.

Eight travelers (\#1-\#8) visit two cities. Others (\#9 and \#10) visit only one city. Specifically, Traveler \#1 visits Tokyo and Osaka, Traveler \#2 visits Osaka and Kyoto, ... Traveler \#9 visits only Kyoto, Traveler \#10 visits only Yokohama.
[R2] Most travelers (a certain group of people) visit two specific cities.
e.g. Travelers \#1-\#8 visit Tokyo and Osaka.
[R3] Two specific cities (e.g. Tokyo and Osaka) are each visited by most travelers.
Note. The group of 'most travelers' may overlap but need not be identical between the two cities.
e.g.

Tokyo is visited by seven travelers (\#1-\#7), Osaka is visited by six travelers (\#5-\#10). Kyoto is visited by three travelers (\#2, \#3, \#9). Yokohama is visited by two travelers (\#8, \#10). Note that the first group of 'most travelers' (\#1-\#7) is not identical to the second (\#5-\#10).

Among the three readings mentioned above, R1 and R2 are the readings in (5a) and (5b), and R3 is what's new here.

The active sentence (11a) has two readings, R1 and R2, whereas the passive version (11b) has three readings, $\mathrm{R} 1-\mathrm{R} 3$. Thus, the readings of active and passive sentences are asymmetrical.

3. 2 Logical formulae

Let us consider the logical formula for the abovementioned three readings, R1-R3. We start with (10) and replace 'All' with 'Most', which is another natural language quantifier symbol which represents most:
(14) a. (Most x: Traveler (x)) [(Two y: City (y)) [Visit (x, y)]]

For most x who is a traveler, there exist two y each of which is a city and such that x visits y. b. (Two y: City (y)) [(Most x: Traveler (x)) [Visit (x, y)]]

There are two y each of which is a city and such that for most x who is a traveler, x visits y .

How are (14a) and (14b) related to R1 through R3?
The logical formula (14a) represents R1, whereas (14b) represents R3, not R2. Note that in (14b), one value for y is taken at one time, and for that particular value (say y_{1}), the set of 'most travelers' is picked out. For the other value for y (say y y_{2}), another set of 'most travelers' is picked out. The latter set may but needs not be identical to the former. In contrast, in the case of universal quantification over travelers (by 'all travelers'), the
difference does not arise. Even though the scope of 'All' is narrower than that of 'Two', there is a unique set of 'all travelers', and therefore readings $R 3$ is reduced to $R 2$.
Then, how is R2 represented in a logical formula?
In R2, there is a certain set of people who visit both of the two cities in question. This means that there is a certain set of cities which has two elements and both of which are visited by the same set of 'most travelers'. Thus, the logical formula will be the following:
(15) $\left(\exists y_{1}:\right.$ City $\left.\left(y_{1}\right)\right)\left(\exists y_{2}\right.$: City $\left.\left(y_{2}\right)\right)[($ Most x : Traveler (x)) [Visit ($\mathrm{x}, \mathrm{y}_{1}$) $\left.\wedge \operatorname{Visit}\left(\mathrm{x}, \mathrm{y}_{2}\right)\right]$]

There exists y_{1} which is a city and there exists y_{2} which is a city such that for most x who is a traveler, x visits y_{1} and x visits y_{2}.
In a more general format:
(16) ($\exists \mathrm{s}: \operatorname{Set}(\mathrm{s}))[|\mathrm{s}|=2 \wedge \forall y \in \mathrm{~s}[\operatorname{City}(\mathrm{y})] \wedge$ (Most x : Traveler (x$)$) $[\forall \mathrm{y} \in \mathrm{s}[\operatorname{Visit}(\mathrm{x}, \mathrm{y})]]]$

There exists a set s such that the following three conditions hold: 1) the cardinality of s is two, 2) for any element y of s, y is a city, and 3) most travelers visit every element of s.

In the format in (16), we could accommodate a general case by changing the cardinality of s accordingly. Note that (16) is essentially different from (17) below. In fact, (17) represents the reading R3 instead.
(17) ($\exists \mathrm{s}$: Set (s) $)[|\mathrm{s}|=2 \wedge \forall \mathrm{y} \in \mathrm{s}$ [City (y) \wedge (Most x : Traveler (x) $)$ [Visit (x, y)]]]

There exists a set s such that the cardinality of s is two and for every element y of s, y is a city and for most x who is a traveler x visits y .
In (17), there are two conditions for the set s. Here, the second and the third conditions for s given in (16) are grouped together. In (17), V has a wider scope than Most, and as a result the set of 'most travelers' are determined for each y. This leads to R3.

In summary:

- The sentence (11a) has two readings, (14a) and
(14b).
. The sentence (11b) has three readings, (14a), (14b), and (16).
The following investigates a few variations of the basic sentences.

3. 3 Variation 1

The first variation to consider is (18a) and (18b). Whereas (11a) and (11b) are generic sentences in the present tense, (18a) and (18b) are their nongeneric past tense version. To make the sentences sound better, 'most travelers' in (11) is changed into 'most of the travelers'.
(18) a. Most of the travelers visited two cities.
b. Two cities were visited by most of the travelers.
Just like (11), (18a) has two readings, R1' and R2', whereas (18b) has three readings, R1'-R3' below:
[R1'] Most of the travelers visited two cities of their choice.
[R2'] Most of the travelers (certain group of people) visited two specific cities.
[R3'] Two specific cities (e.g. Tokyo and Osaka) were each visited by most of the travelers.
Note. The group of 'most travelers' may overlap but need not be identical between the two cities.

3. 4 Variation 2

The second variation to consider is (19a) and (19b).
(19) a. Most travelers are attracted to two cities.
b. Two cities attract most travelers.

These are generic sentences just like (11a) and (11b), but a psychological verb be attracted is used instead of visit. Thus, 'most travelers' are not the agent but the experiencer in terms of the thematic role. For both (19a) and (19b), R1 is o.k.(nearly perfect), R 2 is perfect, and R 3 is impossible. R1 is much better than it is for (11a) and (11b). The
minor problem with R1 is plausibly the weak motivation for mentioning the specific small number two. This could be attributed to a pragmatic factor. If 'a few' is used instead of 'two' for the purpose of solving the just-mentioned problem, R1 is in fact fine.

In summary, the distribution of the reading for (19a) and (19b) is different from that of the reading for (11a) and (11b). Among other things, the R3 reading is missing in (19a) and (19b).

To mention in passing, if we replace most by the majority of as below, we get R 3 , besides R 1 and R 2 . (20) a. The majority of travelers are attracted to two cities.
b. Two cities attract the majority of travelers.

The set of 'the majority of travelers' attracted to the two cities may be different. The difference between the version with most and that with the majority of travelers is left open here.

3. 5 Variation 3

Next, we examine the case with the pair most and all. For practical purposes, let us suppose that there are a total of ten cities in the discourse.
(21) a. Most travelers visit all cities.
b. All cities are visited by most travelers.

Unlike the case with 'two cities', there is a unique set of 'all cities'. Thus, there are two readings, R2" and R3" below. Reading R1" is reduced to R2", given a unique set of 'all cities': [R2"] Most of the travelers (certain group of people) visit all cities.
[R3"] All cities are each visited by most travelers.
Note. The group of 'most travelers' may overlap but need not be identical among different cities.

Sentence (21a) has reading R2". Sentence (21b) has readings R2" and R3".

The logical formulae, (22a) and (22b), accompanied by an informal description, represent the readings [R2"] and [R3"], respectively.
(22) a. (Most x: Traveler (x))[(All y: City (y))[Visit (x, y)]]

For most x who is a traveler, for all y which is a city x visits y .
b. (All y: City (y))[(Most x: Traveler (x))[Visit (x, y)]]

For all y which is a city, for most x who is a traveler, x visits y .

3. 6 Variation 4

Next, we examine the case with the pair most and most. Again, for practical purposes, let us suppose that there are a total of ten cities.
(23) a. Most travelers visit most cities.
b. Most cities are visited by most travelers.

Just like (11), (23a) has two readings, R1'" and R2'", whereas (23b) has three readings, R1'"- R3"" below:
[R1'"] Most travelers visit most cities of their choice.
e.g. Travelers \#1-\#4 visit cities \#1-\#7, and travelers \#5-\#7 visit cities \#4-\#10. Travelers \#8-\#10 visit only one city of their choice.

In this case, seven travelers out of ten visit most cities of their choice.
[R2'"] Most travelers (certain group of people) visit specific most cities.
e.g. Travelers \#1-\#7 visit cities \#1-\#7.
[R3'"] A specific set of 'most cities' (e.g. \#1-\#7 out of ten cities) are each visited by most travelers.
Note. The group of 'most travelers' may overlap but need not be identical between different cities.
e.g. City \#1 is visited by travelers \#1-\#7, city \#2 is visited by travelers $\# 4-\# 10, \ldots$, city $\# 7$ is visited by travelers \#3-\#8, etc.

Note that the example for R1'" above illustrates the difference between R1'" and R3'". In the example, cities \#4-\#7 are visited by seven travelers (i.e. \#1-\#7), but other cities are visited by a few
travelers. Thus, this is not an example for R3. See McCawley (1993, pp. 43-44) for a relevant discussion.
Logical formulae (24a) and (24b) below represent the readings R1"" and R3'", respectively. (24) a. (Most x: Traveler (x)) [(Most y: City (y)) [Visit (x, y)]]

For most x who is a traveler, for most y which is a city x visits y .
b. (Most y: $\operatorname{City}(\mathrm{y}))[($ Most $\mathrm{x}: \operatorname{Traveler}(\mathrm{x}))$ [Visit(x, y)]]

For most y which is a city, for most x who is a traveler, x visits y .

4. Japanese data

In this section, we consider the Japanese versions, using a few different particles such as wa (topic) and o (accusative).

4. 1 Basic sentences

First, the version with the topic marker wa will be examined.
(25) a. Taihan-no ryokoosha-wa futatsu-no toshi-o otozureru
most (of the) traveler-TOP two city-ACC visit
'Most travelers visit two cities.'
b. Futatsu-no toshi-wa taihan-no ryokosha-niyotte
two city-Topic most traveler-by
otozure-rareru
visit-Passive
'Two cities are visited by most travelers.'
As in the English version (11), three readings, repeated below as (26), are involved:
(26) The three readings involved in (25):
[R1] Most travelers visit two cities of their choice.
[R2] Most travelers (certain group of people) visit two specific cities.
[R3] Two specific cities (e.g. Tokyo and Osaka) are each visited by most travelers.

Note. The group of 'most travelers' may overlap but need not be identical between the two cities.

The distribution of the readings is different between the English and Japanese versions. Sentence (25a) has R1 and R2, whereas (25b) has R2 and R3. To be noted, R1 is missing in (25b).
Next, the version with a nominal case marker $g a$ will be examined:
(27) a. Taihan-no ryokoosha-ga futatsu-no toshi-o otozureru.
most traveler-NOM two city-ACC visit 'Most travelers visit two cities.'
b. Futatsu-no toshi-ga taihan-no ryokosha-niyotte otozure-rareru.
two city-NOM most traveler-by visit-Passive
'Two cities are visited by most travelers.'
In this version, the possible readings are identical to those for the English sentences in (11).
Next, a pair of active sentences are considered. Sentences (28a) and (28b) are the scrambled versions of (25a). In (28b), the direct object futatsuno toshi ('two cities') is topicalized.
(28) a. Futatsu-no toshi-o taihan-no ryokoosha-ga otozureru.
two city-ACC most (of the) traveler-NOM visit 'Two cities, most travelers visit them.'
b. Futatsu-no toshi-wa taihan-no ryokoosha-ga otozureru.
two city-TOP most (of the) traveler-NOM visit
'Two cities, most travelers visit them.'
'Two cities are visited by most travelers.'

Sentence (28a), just as (25a), has the readings R1 and R2. Sentence (28b) has the readings R2 and R3, just as (25b), excluding R1.
In light of (25), (27), and (28) above, we could analyze the readings of the Japanese sentences as follows.
i) R1 is included in both active and passive versions by default.
ii) R3 is excluded in the active version by default.
iii) The versions with futatsu-no toshi-wa exclude R1 and includes R3, because of the topicalization function of wa for futatsu-no toshi ('two cities').

4. 2 Contrastive analysis

Table 1 summarizes the investigated possible readings for sentence variations.

Table 1 Sentence variations and their readings.
('E' and 'J' indicate' English' and 'Japanese', respectively.)

Sentence	Reading
(11a) E, active	R1, R2
(11b) E, passive	R1, R2, R3
(25a) J, active, $-w a \ldots$	R1, R2
(25b) J, passive, $-w a \ldots$,- R2, R3
(27a) J, active, $-g a \ldots$	R1, R2
(27b) J, passive, $-g a \ldots$	R1, R2, R3
(28a) J, active, scrambling, $-o \ldots$	R1, R2
(28b) J, active, scrambling, $-w a \ldots$,- R2, R3

First, we compare the pair in (11) and that in (27). The English active/passive sentences and the Japanese active/passive sentences with $g a$ have the same distribution of the readings.

Next, we compare (11) and (25). When a Topic marker wa is used for futatsuno toshi ('two cities') in (25b), R1 is excluded. This is presumably because the reference of two cities should be made specific, as in R2 and R3, due to the topicalizing function of wa.

Next, we examine (28a) and (28b). When compare (28a) and (25a), we see that scrambling has no effect on the readings. When we compare (28a) and (28b), we see that R1 is excluded and R3 is added. (28b) has the same reading as (25b). From these we could argue that when the topic marker is used for futatsuno toshi ('two cities'), either in the active or the passive sentence, the reference of two cities should be made specific. This excludes R1 and allows for R2 and R3. It is nontrivial that R3 is added in (28b), an active sentence. This may indicate that a higher priority is given to the effect of wa than to the
default readings of an active sentence.

5. Conclusion

The sentence Most travelers visit two cities and its passive version are asymmetrical regarding their possible readings. The active sentence has two readings, whereas the passive sentence has one more reading. The ambiguity is not simply attributed to the scope ambiguity of the quantifiers most and two. This article investigated the readings of the basic sentences and their variations, including Japanese data on empirical and logical bases. Different distributions of the reading were observed and analyzed.

Acknowledgements

Thanks go to Katie Gruber who provided me with a native's intuition on the example sentences. Any shortcomings are, of course, mine.

Note

This paper assumes, in the framework of generalized quantifier theory, that most is a synonym of more than half.

References

Allan, K. (2001). Natural language semantics. Oxford: Blackwell Publishing.
Chierchia, G. \& McConnell-Ginet, S. (2000). Meaning and grammar. Second edition. Cambridge, MA: MIT Press.
Kearns, K. (2000). Semantics. London: Palgrave.
Keenan E. L. \& Paperno D. (Eds.) (2012). Handbook of quantifiers in natural language. (Studies in linguistics and philosophy ; v. 90) Dordrecht: Springer.
McCawley, J. D. (1993). Everything that linguists have always wanted to know about logic but were ashamed to ask. Second edition. Chicago: University of Chicago Press.
Saeed, J. (2009). Semantics. Third edition. Chichester, UK: Wiley-Blackwell.

