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Abstract
The aim of this paper is to demonstrate that an adaptive learning rule can lead the
economic system to perfect foresight (or rational expectations) equilibrium in a

Samuelson-type overlapping generations model of a monetary economy,



1 Introduction

Research questions on stability of perfect foresight (or rational expectations)
equilibria, what is called ezpectational stability as a equilibrium selection cri-
terion, are asked increasingly often in the recent literature, such as whether
simple and plausible learning rules exist that do converge to perfect fore-
sight equilibria under general conditions, and moreover, whether such learn-
ing rules can single out a perfect foresight equilibrium, corresponding to a
monetary steady state. Over the last few decades a large number of stud-
ies have been made on expectational stability, originally proposed by De-
canio (1979), Friedman (1979) and Lucas (1978), and extensively developed
by Bray (1982), Bray and Savin (1986), Evans (1983,1985,1986,1989), and
Evans and Honkapohja (1994a)’.

In this paper attention is focused on stability of perfect foresight equilibria
with adaptive learning rules (or adaptive expectations) in a Samuelson-type
overlapping generations model of monetary economy. Adaptive learning rules
in overlapping generations models have been studied often in the literature
on learning. See Lucas (1986}, Guesnerie and Woodford (1991), and Evans
and Honkapohja (1995). Lucas (1986) is an early example of the analysis of
adaptive learning as a way of selecting among the multiple possible equilibria
in an overlapping generations model. He has suggested that the outcome of
an adaptive learning process in the overlapping generations model will be a
perfect foresight equilibrium.:

The aim of this paper is to demonstrate Lucas’s conjecture. Our main
result is that an adaptive learning rule leads the economy to the perfect fore-
sight equilibrium, pr ovided that there are two steady states, corresponding
to the perfect foresight equilibrium?, and the autarchy steady state, corre-
sponding to no exchange between generations. For simplicity we will call
the stationary perfect foresight equilibrium the perfect foresight equilibrium
below. -

1Tn linear dynamic economic models the issue of convergence of least squared learnings
to rational expectations equilibria has been studied by Marcet and Sargent (1988,1989).
On the other hand learning in nonlinear models has been considered by Bullard (1954},
Evans and Honkapohja (1994b,1995), Fuchs (1979), Grandmont (1985), Grandmont and
Laroque (1986,1990,1991), Woodford (1990}, Guesnerie and Weodford (1991), and Kaizoji
(1994).

2The steady state is often called the stationary monetary equilibrivm.
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2 The model

The model involves one non-storable good and a fiat money, that is employed
for transferring wealth from one period to the next. The money stock,
will be assumed to be constant over time. The model does not bequest. For
simplicity, production is taken to be exogenous. Agents live two periods and
are identical (equivalently there is a single agent) in each generation. The
agents’ endowments of the good at each age 7 =1,2, are !} > 0, {3 > 0. The
agent’s tastes among consumption streams @; = 0, ag > 0 are described by
the separable utility function Vi(a;) + Va(az).
‘We shall assume as follows :

Assumpiion I : For each 7 = 1,2, Vi (a;) is continuous on {0, +c0)
and twice continuously differentiable on (0,+o0). Moreover, Vi(a,) > 0,
V#(a;) <0 for e, and lim, o V(a,) = +00, limg, 40 Vi(a:) = 0.

We focus on the Samuelson case, that is,
Assumption 2: 0=V/(I})/Vi(l5) <1

Let us define the so-called Arrow-Prott relative degree of risk aversion as
R.(a,) = —=V¥{a,)a,/V!(a,) which are well defined whenever a, > 0. We
shall use the following assumption :

Assumption 3 : Ra(as) is a nondecreasing function of a, for every az > 0.

Under the foregoing environment we can get the well-defined difference
equdtion that represents the law of motion of the economic system

ViU — ) p = V(s + )i, (1)

where g, and pg,, denote the real balances and the real balances expected
by the young agent, respectively.
If we write vi(pn) = VY (I} — po) and wo(pfy)) = 1§41 V3(13 + piyy), then

I T | = x(ses1)- h (2)

The function x(z) is continuously differéntiable on the open interval (0, +00).
We see that v, is a differentiably increasing function that maps the interval



[0,1}) onto (0, +cc), while va maps [0, +00) into itself. One has x(x®) for all
p¢ 2 0. If py = sup Ra(as) < 1, x{p°) is increasing everywhere, while x(u°)
has & unique maximum under Assumption 3 when p; > 1. Therefore under
Assumptions 1,2 and § there is ¢ unique perfect foresight equilibrium p*. For
further details see Grandmont (1985).

2.1 Adaptive Learning Dynamics

We have a dynamic system where the expectations determine the current
variables through equation (2). In order to define the dynamics fully, we
need to specify the expectations formation function. If agents do know at the
beginning of the date ¢ only the current and past values of the real balances,
(.Ut,ft;_h J770 SR ), then young agents have to forecast the future values
of the real balance by using the current and past values of the real balances
at the beginning of the date {. One way to model expectations formation
is to postulate as in Grandmont and Laroque (1986), that at each date, the
real balance pf,, expected by young agents forecast at the beginning of the
date ¢ is a fixed function of the current and past values of the real balance
{770 T 7R R VT PO ). We assyme that the expectations function is formed
as the weighted average of past values.

(2]
Mg = Z(l - &)T—lﬂz-'n 0<ac<l
T=1

We can rewrite the above equation the following

M=t tofp —pf), 0<a<l @)

where @ is a constant of proportionality called the expectations coefficient.

With the adaptive learning rule (3), expectation is revised acoording to the

gap between previous expectations and realizations. Substituting (2) into
(3), we get the following

topr = (1= a)uf + ox(ug)- (4)

The difference equations (2) and (4) define a temporary monetary equi-

librium dynamics with adaptive expectations, that is, adaptive learning dy-
namics.
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Lemma 1: Under Assumptions 1 and 2, a steady state in adaptive learn-
ing dynamics is equal to a perfect foresight equilibrium.

Proof : If a steady state of the equation (2) is equal to a steady state of
the difference equation (4), then Lemma, 1 is proved. The proof is immediate,
The perfect foresight equilibrium satisfies the equation p* —x(u*) = 0. Then
the equation {4) also becomes the steady state uf,; = u§. Thus the above
statement is proved. (Q.E.D.)

We will investigate the properties of the forward temporary equilibrium
dynamics in Section 3 below.

3 Stability of Perfect Foresight Equilibria

In the present section we study stability for a perfect foresight equilibrium
in adaptive learning dynamics which are generated by the equations (2) and

(4).

For convenience of analysis we rewrite (4) as follows :

Py i) = pigy — ox(pggy) ~ (1 opg =0, (5)
Since the function x(ys,,) is continuously differentiable on the open inter-
val (0, 4c0), F(ug, 45,1 ) bas continuous partial derivatives on a neighborhood
of an equilibrium (z*, *) at which F(u*, p*) = 0 and Fye  (p*, p*) # 0 where
B,z denotes 0F/0us,;. Under the above conditions we can apply the im-
plzc:t function theorem to the form F(u,pf,,) = 0. The implicit function
theorem states that if F is smooth and if a equilibrium point, (u*, z*), is 2
point at which Fpe = does not vanish, then it is possible to express uz,, asa
function of yf in a region containing the equilibrium point. In other words
we can define forward adaptive learning dynamics pf,; = g(xf) in a region
containing the equilibrium point, (u*, #*). Furthermore, the derivative of g
is given by the implicit differentiation formula® :

3Tarui (1991} has originally pointed out that (6) is a condition of a local stability for
a steady state,
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Fe(p, 1)
Fug,, (u*y )

From the foregoing analysis we can derive the following

g )=~ (6)

Theorem I : Let i* be the perfect foresight equilibrium which has the
. least value among the multiple possible equilibria. If Assumption 1 and 2
hold, then the perfect foresight equilibrium z* is locally stable.

Proof : we get the following
— ch(ﬂ'*i JL-L‘) (1 - a)
i) = — t = . 7
I = e o8 ~ T= o) &

Since y/(j2*) is always less than 1 in the Samuelson case, ¢'(ji*) is always
less than 1. This means that forward adaptive learning dynamics pf,; =
g{15) are locally stable. It follows from Lemma 1 that g* is locally stable.

(QE.D.)

Next we look at a condition of global stability of a perfect foresight equi-
librium.

Theorem 2 : If Assumptions 1, 2 and 3 hold, the unique perfect foresight
equilibrium g* that is globally stable exdsts.

Proof : We define the following
[ 1 a a e f— e
B = m')‘ﬂu-x - (_lja—)l’(#r.-u) =7 (Nt-l-t)- (8)

Since f(uf,,) is continuous and monotonically increasing, or f{xf,,) has a
single minimum value, it follows that the map f(uf,,) is a continuous and
monotonically increasing function which has an interval I = [a, b} for domain
where @ is a positive value of f(uf,;) = 0, and has range J = [0,d]. It is
possible that b and d are infinite. (See Figures 1 and 2.) Then, there is the
inverse functivn g(ug) of f{s5,,), {that is, uf,; = g(sf)) with domain J.

Since the map f has the unique perfect foresight equilibrium p*, f satisfies
the following
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Condition I
J©)=0, f(u)=p",

£, ) < mfy, for a < pf, | < p*,
Slug ) > 1y for pu* < pfy, < b

Therefore the inverse function g satisfies the following conditions

Condition 2 :

9(0) =0, g(n*)=u",
g(uf) > i for e < pf < p,
gf) < pf for pt < pf < d.

It follows from Condition 2 that g(f) is a contraction mappingon I2|.
(See Figure 3.) Thus a perfect foresight equilibrium y* is globally stable from
the contraction mapping theorem. (Q.E.D.)

3.1 Example

Suppose that the utility function for each generation is given by

Vi(a,) = as-[—ﬁr)/(l ~fr), T=12 (9)

The utility function {12) satisfies Asumptions 1, 2 and 3. Therefore there
exists a unique perfect foresight equilibrium p*. As it concerns the atitude to
risk, the function is known as constant relative risk aversion (CRRA}, where
the RRA coefficient is - V", (a.)/V'(a;) = ;. We assume that 3; = 1 and
f2 > 1. Then F(jf,,, 15) is as follows :

ol o {1 Y— 1 (4 4 . (4 & o (i
Py ) = ﬁ‘:—(ﬁﬂm-u—(—1—:&—)11#;“/[#“.1+(52+!I[.|.1)‘6]—!£; =0, (10)

(1—w)

'.q'(ﬂ") T1- ol — (L + Bl + )= /17) .

Since p*(1 + fa(ly + 1)1 /1y > 0, we get ¢'(u*) < 1. The foregoing result
prove that a perfect foresight equilibrium is locally stable.
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For analysis of the global stability of 12* we rewrite (13) as follows :

c 1 e {(r * ¢ e * ¢ F L
= 1— (r)ﬂ'f-ll - 1- ”)ln‘*u oJlgy o + (5 + gy )] = S, ). (12)

The function f{uS ' ,') is continuous and has a single minimum value. Further-
more f(jsf,,) satisfies Conditions 1 and 2. Therefore it follows from Theorem
2 that ;2* is grobally stable.

4 Concluding Remarks

In this paper we demonstrate that adaptive expectations always lead the
dynamic system to the perfect foresight equilibria in a Samuelson-type over-
lapping generations model of a monetary economy. Once forward adaptive
learning dynamics converge to a perfect foresight equilibiium, a generation’s
learning becomes complete, so that the generation has perfect foresight. New
generations who are born subsequently face the situation that is exactly the
same, in all respects, as that faced by the preceding generation. Thus they
also have perfect foresight. This conclusion is independent of the agent’s de-
gree of risk aversion. It is known from Benhabib and Day (1982), and Grand-
ment (1985), and other authors that backward dynamics may be chaotic, pro-
vided that agents have perfect foresight {that is, j1ry1 = j#) and are very risk
averse. Constder the constant elasticity case, that is, Vi(a,r) = al™ /(1-1.)
once again. Backward perfect foresight dynamics are chaotic in the sense of
Li-Yorke, as the Corollary of Grandmont {1985) demonstrates, when 3 is
large enough provided that the other conditions are constant. On the con-
trary we can illustrate that the larger the old generation’s RRA coefficient,
[}z becomes, the more rapidly forward adaptive learning dynamics converge
to the perfect foresight equilibrium. To put it another way, the more the old
generation becomes risk averse, the more rapidly the learning is complete.
On these grounds we have come to the conclusion that an agent’s adaptive
behavior does lead to perfect foresight {or rational expectations) equilibrium
under general conditions, and therefore there is considerable justification for
the assumption of rational expectations in the long run. ‘
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Figure 1
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Figure 2: The inverse relation of f
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Figure 3: Stability of p*
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