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Expectations, learning dynamics and the stabilization
policy in an overlapping generations model
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Abstract

The aim of this paper is to explore whether a least squares learning
is able to lead the dynamics of an economic system to perfect foresight
equilibrium, and whether a stabilization policy can stabilize unstable
least squares learning dynamics in a monetary overlapping generations
model. We show that least squares learning dynamics are unstable if
agents have strong wealth effects which dominate intertemporal sub-
stitution effects, and overreactionary expectations. Therefore, a least
squares learning is a source of endogenous learning which drives eco-
nomic¢ Ructuations, and moreover, misperceptions doesn’t vanish in
the least sguares learning dynamics. Then we illustrate that a sta-
bilization policy (the increase of the growth rate of money supply
through lump sum transfers) can stabilize any unstable learning dy-
namics when the least squares learning cannot lead to the perfect
foresight equilibrium.

Key words : adaptive {overreactionary) expectations, least
squares learning, stabilization policy, and chaos.
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1 Introduction

Self-fulfilling expectations are often viewed as a long run concept, where
agents have already learned compietely the law of motion governing the sys-
tem in which they operate. One should expect the agents to make significant
forecasting mistakes for quite some time while they attempt to learn the
dynamic laws of the signals they receive. It is thus quite natural that the
first question we shall address is how expectations and learning take place,
and more importantly, whether expectations and learning will lead towards
perfect foresight equilibrium. If the temporary equilibrinm dynamics with
learning {learning dynamics) don't converge to perfect foresight equilibrium
in the long run, then the corresponding efficiency losses will appear. The next
question we must consider is whether stabilization policies implemented by
the government to get rid of efficient losses, can lead to stabilizing the unsta-
ble learning dynamics. Although a considerable number of studies have been
made on these questions over the past few years, there is little agreement on
how the economic system is influenced by expectations and learning’ .

The aim of this paper is to propose an answer to the two questions posed
above. The basic model we shall use here is the simple ‘Samuelsonian’ model
of overlapping generations? . We apply adaptive (overreactionary) ezpec-
tations as an alternative expectations form to perfect foresight and we as-
sume that agents estimate the unknown structural parameter,{error correc-
tion coefficient) by using a least squares learning. First, we demonstrate
that (i) if agents have strong intertemporal substitution effects which dom-
inate wealth effects, and/or weakly adaptive expectations, temporary equi-
librium dynamics converge to perfect foresight equilibrium, and (ii) if agents

! On the recent works of expectations and learning mechanisms, see Day and Lin (1992),
Grandmont and Laroque (1986, 1992}, Guesnerie and Woodford (1992), Marcet and Sar-
gent (1989}, Benassy and Blad (1989), Evans and Honkapohja (1994), Bullard (1994) and
Kaizoji (1995).

2 Benhabib and Day (1982), and Grandmont, {1985) demonstrate that complex endoge-
nous cycles oceur as intertemporal equilibrium phenomena Their studies demonstrate that
persistent economic fluctuations generated by volatile forecasts are indeed compatible with
individual optimization, self-fulfilling expectations and Walrasian market clearing provided
that there are capital market imperfections. The outcome of these studies is that under
increasingly plausible assumptions, endogenous fluctuations equilibria with self-fulfilling
expectations do occur in such models, see Boldrin and Woodfords' review [Boldrin and
Woodford (1990)).
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have strong wealth effects which dominate intertemporal substitution effects,
and/or strongly overreactionary expectations, temporary equilibrium dynam-
ics are able to be chaotic. Then we illustrate that (iii) a least square learning
for expectations leads to the perfect foresight equilibrium, provided that the
endogenous fuctuations are caused by agents’ overreactionary expectations,
and (iv} on the contrary the least squares learning cannot lead to the perfect
foresight equilibrium, provided that the endogenous fluctuations are cansed
by strong wealth effects. Finally, we show that (v) a stabilization policy {an
increase of the growth rate of money supply) can stabilize unstable learning
dynamics when the least squared learning cannot lead the economic system
to the perfect foresight equilibrium.

2 The model

Consider an overlapping generations model where each generation lives two
periods. The model involves one non-storable good and a single asset, money,
that is employed for transferring wealth from one period to the next. For
most of this paper, the money stock, M will be assumed to be constant over
time. Agents live two periods and are identical (equivalently there is a single
agent) in each generation. The agents’ endowments of the good at each age
T =1,2, are e¢; and e;. The representative consumer is assumed to have the
separable utility function,

Uler,e2) = loger +cs /(1 - B), (1)

where ¢; and ¢, denote consumption in the first and second periods of life
respectively. As concerns the attitude to risk, this utility function is known
as ‘constant relative risk aversion’ (CRRA), where the RRA coefficient is
—ulf (eo)fvh{co) = B. A large (3, which is greater than unity, means that an
agent have a strong wealth effect which dominates an intertemporal substi-
tution effect, and on the contrary a small f, which is less than unity, means
that an agent have a weak wealth effect® .

We focus on the Semuelson case. Namely, we consider that the consumers
hold positive money balances, (that is, technically this can be ensured by

3 See the chapter 5 of Blanchard and Fischer (1985) for a full account of the relation
between a wealth effect and 3.



choosing the endowments appropriately.) Under the foregoing environment
we can get the well-defined difference equation that represents the law of
motion of the economic system

pe = expfyr [y + (61 +e2)?] = x{pts). (2)

where 1, and g, ; denote the real balance and the real balance expected by
the young agent, respectively. The steady states of (2) are 0 and y* where
e; = p* + (u* + ex)?. It is proved easily that (2) has the unique stationary
monetary equilibrium, g*.

2.1 Expectations

We have a dynamic system where the expectations determine the cur-
rent variables through equation (2}. In order to define the dynamics fully,
we need to specify the expectations formation function. If agents do know
at the beginning of the period ¢ only the past values of the real halances,
(thes Hhem1y veereens ), but they don’t know the current value of the real balance,
then young agents have to forecast the future values of the real balance by
using the past values of real balances at the beginning of the period ¢.

One way to expectations formation is to postulate that at each period,
the real balance pf, ; expected by young agents is a fixed function of the past
values of the real balance. In this paper, we assume that the expectations
are formed as follows? :

e = (1 — ot + apte-y, (3)

where @ is a constant of proportionality called the error correction coef-
ficient. Substituting (3) into (2), we get

ez = (1 — apf + exlpg) = Folpf)- {4)

4 If the infinite sum converges, then The expectations formation function (3) is the same
as the weighted average of past values :

o0

Hep =0 E(l —a) "y 1
=1
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Let us name the case of 0 < o < 1 the adaptive case, and the case of 1 < «
the overreactionary case. '

The difference equation (4) defines a forward temporery equilibrium dy-
namics with adaptive (overreactionary) ezpectations.

The map F,(u*) has two steady states, the perfect foresight equilibrium,
#* and the no-trade equilibrium, 0. A steady state of the map x(r°) is equal
to a steady state of the map F,(¢). The proof of this statement can be
given immediately. The perfect foresight equilibrium satisfies the equation
#* — x(n*) = 0. Then the temporary equilibrium dynamics (4) also become
the steady state pf; = pf. Thus the above statement is proved. That means
that a stetionary temporary equilibrium with adaptive (or overreactionary)
ezpectations is equal to a perfect foresight egquilibrium. We will investigate
the properties of the forward temporary equilibrium dynramics (4) in Section
3 below.

3 Temporary equilibrium dynamics with adap-
tive expectations

In the present section we study the dynamic propensities of temporary equi-
librium dynamics which are generated by the equation (4).

3.1 Siability of the perfect foresight equilibrium

We begin the analysis by demonstrating the condition of the local stability
of the perfect foresight equilibrium p*.

Proposition 1 : If x'(u*) = (15 /e1)[1 + Blexs — 17}/ (1" + €2)] < 2/,
where 1* 1s the unique perfect foresight equilibrium, then the perfect foresight
equilibrium g* is locally stable,

Proof of Proposition 1 : It follows that under the above condition
the derivative of F{u®) at the perfect foresight equilibrium p* is less than 1.
Namely, F! =1+ a[x'(¢*) — 1] < —1. The perfect foresight equilibrium p*
is thus locally stable. (Q.E.D.)

Proposition 1 demonstrates that if the error correction coefficient & and /or
RRA coefficient 3 are small encugh, then the temporary equilibrium dynam-
ics converge to the stationary monetary equilibrium. In other words, if an



agent has a very weakly adaptive expectation and/or a weak wealth effect,
the perfect foresight equilibrium has stability.

3.2 Chaotic dynamics

In this section we will look at how the dynamic propensities of the tem-
porary equilibrium dynamics (4) change as § and @ become large. We will
demonstrate a sufficient condition for the temporary equilibrium dynamics
to lead to chaos below.

We begin to study the effects of the changes of RRA coeflicient 8. For
simplicity of analysis we assume & = 1. In this case the expectation formation
function become pf,; = py—;. Under this condition Grandmont (1985) and’
Kelsey (1988) prove the following proposition® ;

Proposition 2 :  For all sufficiently large 3, the map F,(p®) has a
3-cycle provided e; < 1 and e; + €3 > 1/e,.

Proof of Proposition 2 : See the proposition of Grandmont (1985)
and the proposition 3.3 of Kelsey (1988).

Li and Yorke (1975) prove that the existence of 3-cycles implies chaos.
Therefore the temporary equilibrium dynamics (4) become chactic for any
sufficiently large 5. .

Figure 1 is the bifurcation diagram of pf where the RRA coefficient 3
varies smoothly from 5 to 30 under the specification & = 1, ey = 10 and
e = 0.95. From Figure 1 we can know that p* begins to be unstable where
the value of 8 is equal to 5.754. (We can calculate the value of § by using
the condition of Proposition 1.} Figure 1 also shows chaos to occur through
a sequence of period doublings which is one route to chaos. Thus, Figure 1
illustrates the results of Proposition 2.

Then we study the effects of the changes of the error correction coefficient
2 to the temporary equilibrium dynamics.

Proposition 3 :  Assume that e > 2/x'(¢*). Then there exists «
such that the temporary equilibrium dynamics {4) are chaotic in the sense
of Li-Yorke.

5 Benhabib and Day (1982) demonstrates the sufficient conditions for Li-Yorke chaos in
Gale economy.
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Proof of Proposition 3% : The map y and I satisfy the following ;

x(0) =0, x(u)=p",
Fo>pt forO<ps <yt
Fp <yt for p* < py® < +oo.

Figure 2 {a) and Figure 2 (b) show the map x and the corresponding map
F,. p° denotes the value of p* which maximizes the map F,, and y denotes
the value of 4¢ where F,(1¢) = 0. The map F, in Figure 2 (b} is more hump
than the map x{u®) in Figure 2 {a). It means that « is greater than 1. Under
the above conditions the maximum of F, increases as « becomes large, and
the maximum of F,, approaches to +00, as e approach to +co0. On the other
hand the value of 48, decreases as a becomes large, and g approaches to u*,
as o approaches to +oo. From the continuity of the map F, with respect to
« there exists & such that the maximum of Fo{1°) is equal to p. Therefore
it follows that there exist « such that F,, satisfies the so-called overshoot
condition :

FY(E*) < FA(7°) < B < Fali). (5)
(QED.)

Figure 3 is the bifurcation diagram of uf where the error correction coef-
ficient o varies smoothly from 0.9 to 1.3 under the specification § = 5.754,
e; = 10 and e; = 0.95. Figure 3 shows chaos to occur through a sequence
of period doublings as & becomes large. Finally Figure 4 summarizes the
propensities of the temporary equilibrium dynamics with adaptive (overre-
actionary) expectations. These figures demonstrate that cyclic and chaotic
adaptive learning dynamics are caused by any large £ and/or any large .

In other words, if agents have strong wealth effects, complex endogenous
fluctuations occurs, and the complexity of the learning dynamics is amplified
by overreactionary expectations.

4 Least squares learning dynamics

In the foregoing section we assume that the expectation formation function
is the fixed function (3) over the time of past values of ;. However, it seems

6 For the proof of Proposition 3, see also Kaizoji (1995).



natural to suppose that at the beginning of the period t, agents get some
estimate o, of the error correction coefficient a by applying a given statis-
tical procedure to past observations, c; = R(fte1, fli—2; covvreene ). Let us now
attempt to extend this consideration into the adaptive learning dynamics.
It seems that a least squares learning rule is one of most natural statistical
methods that agents get some estimate of o. We assume the following least
squared learning rule of a,

ming [pt—1 — .tlf__T}2. {6)

where
e = (1 — Qps_qp_y +ox(pf r.,). (7)

Substituting (8) into (7) and solving the above minimization problem, we
get

o = Zg;%(n”t—ﬂ" — py g )(fe—T—2 — pi_p_1) 8
t— T2 4.t 2 i ( )
Tros (2 — 15 7}

Therefore the least squares learning dynamics are :

e = (1 — ou)p + aax(f). (9)

It is difficult to analyze the least squares learning dynamics (9) mathemati-
cally because (9) is a multi-dimensional difference equation. Thus we show
the dynamic properties of (9) through computer simulations. Figure 5 sum-
marizes the propensities of the least squares learning dynamics (9). In Figure
5 a of the horizontal axis is that the initial values of « before agents begin
least squares learning,. ' ‘
Comparing Figure 4 and Figure 5, we find that in the area D in Figure 5
least squares learning dynamics converge to the perfect foresight equilibrium
#* while temporary equilibrium dynamics {4) are unstable. To look at this
more concretely, we assume ap = 1.3, § = 5, e; = 10, and e; = 0.95 where
g denotes the initial value of the error correction coefficient. Figure 6 shows
both time paths of the temporary equilibrium dynamics (4) and the least
squares learning dynamics (9) under this set of parameters. Time series of
temporary equilibrium dynamics are chaotic (the area A in Figure 6). The '
point, ¢ is the starting point of the least squares learning. After the agents
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do the learning of & according to {8), the value of & changes from 1.3 to
about 0.88, and so the least squares learning dynamics (9) converge quickly
towards the perfect foresight equilibrium g* (the area B in Figure 6). We
also find that, in all values of (g, ) that we put computer simulations in
practice, o; is staying in the area of 0 < a; < 1 after agents begin the
least squares learning. Thus the least squares learning is effective against
the stabilization of the chaotic dynamics which is caused by overractionary
expectations (ap > 1).

On the other hand Figure 7 shows both time paths of the temporary
equilibrium dynamics and the least squares learning dynamics under a large
. We assume op = 1, § = 185, ¢; = 10, and e; = 0.95. Under this set of
parameters, time series of temporary equilibrinm dynamics are chaotic (the
area A in Figure 7). The point, a is the starting point of the least squares
learning. After the agents do the learning of & according to (8), the value
of & changes from 1 to about 0.77. Nevertheless the least squares learning
dynamics (%) occur bounded irregular fluctuations (the area B in Figure 7).
The reason is that a strong wealth effect, that is, a large /3, give cause for
endogenous fluctuations. In this case agents’ misperceptions never vanish in
the least learning dynamics (9) even in the long-run term.

5 Stabilization policy

It follows from the foregoing analyses that the unstable least squares learning
dynamics are caused by the wealth effect which dominates an intertemporal
substitution effect. Since the instability of learning dynamics means that
young agents have forecasting mistakes of the real balances at the next period,
it will reduce economic efficiency.

Therefore, it is an important question in this case whether any economic
policy which the government implements can stabilize the unstable learning
dynamics.

According to Grandmont (1986), let us assume in addition that there is
a government. At period ¢, it gives a lump sum money subsidy 5; (to be
interpreted as a Jump sum tax if negative) to the old agent. We define the
growth rates of the money supply as follows,

st = {Mey + Sp) /My, (10}



where M;_; > 0 designates the money stock at the outset of period ¢. Given
My > 0, the evolution of the money supply is then ruled by

My =M,_18 >0, given M, >0, (11)

A newborn consumer has to solve the following decision problem. Let
p > 0 be the current money price of the good, and Am® lump sum subsidy
that he expects at the present period for the next period. He must choose
then his current and future consumption ¢; > 0, cg > 0, and his money
demand m > 0 so as to maximize his utility function subject to

poy+m=pe; and pcy = ptes + AmS. (12)

We assume that the government informs correctly the young consumer of the
quantities, Am at the next period. Then the least squares learning dynamics
are given by the following difference equations ;

B e
(15 + se(e2 -+ pf)?

In this case the perfect foresight equilibrium is p* where the equality,
e; = p* + s;(u* + e2)? holds. It follows from this equality that the change
the growth rate of money suppiy s, (monetary policy) influences the set of
stationary state magnitudes, so that it influences the least squares learning
dynamics.

Figure 8 illustrates this stabilizing effect of the monetary policy. To
analyze the effect of the monetary policy, we assume that s; is a parameter
s, and choose 8 = 185, e = 10, ec = 095, s = 1 and ap = 1 as the
initial value. As we illustrate above, both of the temporary equilibrium
dynamics (4) and the least squares learning dynamics (9) are unstable under
this set of parameters. The time series of 4§ of the area A in Figure 8 are
the temporary equilibrium dynamics, and the time series of uf of the area
B are the least squares learning dynamics before the implementation of the
monetary policy under § = 18.5, e; = 10, and e; = 0.95. Both time series
of uf fluctuate irregularly. Then, we consider that the government increases
the rate of growth of money supply from s = 1 to s > 1. In Figure 8 the
point b is the starting point of implementation of the monetary policy. The
perfect foresight equilibrium g* decreases and the graph of the map x is
pushed down by the monetary policy. Hence if the growth rate of money

fin = (L — i (13)
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supply s is large enough, then the learning dynamics may converge to the

perfect foresight equilibrium, The time series of 4 of the area C in Figure
8 are the least squares learning dynamics after the implementation of the
monetary policy under § = 18.5, e; = 10, e2 = 0.95, and s = 3.5. After the
implementation of the monetary policy, the learning dynamics converge io
the new perfect foresight equilibrium. Figure § summarizes the stabilizing
effects of the monetary policy. Figure 9 illustrates that any unstable least
squares learning dynamics can be stabilized by the monetary policy.

6 Concluding Remarks

In conclusion, (i) if agents have strong wealth effects which dominate in-
tertemporal substitution effects, then the least squares learning dynamics
are unstable, and (ii) a stabilization policy (an increase of the rate of growth
of money supply through lump sum transfers) can stabilize any unstable
learning dynamics when the learning cannot lead to the perfect foresight
equilibrium.

Qur findings suggest that a least squares learning is able to be an inde-
pendent source of endogenous learning which drives economic fluctuations,
and moreover that significant forecasting mistakes may not vanish in the
least squares learning dynamics. These misperceptions may reduce economic
efficiency. Then it is important to stabilize the learning dynamics by govern-
ment’s intervention.
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Figure 4 : Temporary equilibrium dynamics

Figure 4

Fipure 4 summarizes the propensities of the temporary equilibrium dy-
namics with adaptive (overreactionary} expectations (4).

A : The temporary equilibrium dynamics {4) converge to the perfect
foresight equilibrium p*.
B : There are cycles of period 2°, and chaotic fluctuations.
C : The temporary equilibrium dynamics diverge.
Figure 4 demonstrates that the temporary equilibrium dynamics (4) con-
verge to the perfect foresight equilibrium when S and/or « are small while

cyclic and chaotic temporary equilibrium dynamics are caused by any large
B and/or any large .
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Figure 5 : Least squerd learning dynamics

47

Figure 5

Figure 5 summarizes the propensities of the least squares learning dy-
natnics (8).

A : The least squares learning dynamics converge to the perfect foresight
equilibrium g*.

B : The least squares learning dynamics occur bounded irregular fluctu-
ations.

C : The least squares learning dynamics diverge.

D : The least squares learning dynamics converge to the perfect foresight
equilibrium p*.

In Figure 5 e of the horizontal axis is that the initial values of & before agents
begin least squares learning. Comparing Figure 4 and Figure 5, we find that
in the area D in Figure 5 the least squares learning dynamics converge to
the perfect foresight equilibrium p* while temporary equilibrium dynamics
(4) are unstable.



Figure 6 : Temporary equilibrium dynamics and Least
squares learning dynamics

kg = 1.25

1.2 ¢

The expected real balances

Period

Figure 6

Figure 6 shows both time paths of the temporary equilibrium dynamics
and the least squares learning dynamics under a large e and a large S.
we assume ag = 1.3, 8 = 5, e = 10, and e; = 0.95. Under this set of
parameters, time series of temporary equilibrium dynamics are chaotic (the
area A in Figure 6). The point, a is the starting point of the least squares
“learning. After the agents do the learning of @ according to (7), the value of
« changes from 1.3 to about 0.88, and so the least squares learning dynamics
(8) converge quickly towards the perfect foresight equilibrium p* (the area B
in Figure 6).
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Figure 7 : Temparary equilibrium dynamics and Least
squares learning dynamics
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Figure 7 shows both time paths of the temporary equilibrivm dynamics
and the least squares learning dynamics undera large o and a sufficiently
large 7. We assume o = 1, # = 18.5, ¢y = 10, and e; = 0.95. Under this
set of parameters, time series of temporary equilibrium dynamics are chaotic
(the area A in Figure 7). The point, a is the starting point of the least squares
learning. After the agents do the learning of & according to (7), the value of
o changes from 1 to about 0.77 and the least squares learning dynamics (8)
oecur bounded irregular fluctuations (the area B in Figure 7). The reason is
that the strong wealth effects give cause for endogenous fluctuations.
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Figure 8 : Least squares learning dynamics and Stahilization
policy
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Figure 8

Figure 8 illustrates this stabilizing effect of the monetary policy ( an
increase of the growth rate of money supply). To analyze the effect of the
monetary policy, We set §, = 18.5, ey = 10, e = 0.95, s = 1 and ap = 1.
The time series of yf of the area A in Figure 8 are the temporary equilibrium
dynamices, and the time series of uf of the area B are the least squares learning
dynamics before the implementation of the monetary policy under = 18.5,
ey = 10, and e; = 0.95. Both time series of yy fluctuate irregularly. Then we
consider that the government increases the rate of growth of money supply
from s = 1 to s > 1. The point b is the starting point of implementation
of the monetary policy. The time series of pf of the area C are the least
squares learning dynamics after the implementation of the monetary policy
under 3 = 18.5, e; = 10, e = 0.95, and s = 3.5. After the implementation
of the monetary policy the learning dynamics converge to the new perfect
foresight equilibrium.
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Figure 9 : The effects of stahilization policy
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Figure 9

Figure 9 summarizes the stabilizing effects of the monetary policy.

A : The least squares learnig dynamics (13) converge to the perfect fore-
sight equilibrium p*.

B : The least squares learning dynamics (13) occur bounded fluctuations.

Figure 9 lustrates that any unstable least squares learning dynamics can be
stabilized by the monetary policy.
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