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1. Introduction

Pricing options and related derivative instruments such as warrants is a difficult task
as informational efficiency is not always the norm. This issue of informational efficiency
becomes particularly problematic in emerging markets or in new markets with less
liquidity. In this paper we provide an alternative approach to pricing options based on a
maximum entropy distribution and apply it to a warrant issued by Thai Farmers Bank
(TFB). The maximum entropy distribution (MED) is derived by using the historical
return series for TFB stock, the underlying asset, as well as the return series for the Thai
stock index. We assume the index provides “information” useful in pricing the TFB
warrant. By using the index we are also implicitly using information on the non-

diversifiable risk or beta since the correlation between the two series is non-zero.

2. The Entropy Maximization Problem

We assume that at time 7, the TFB stock price SP(#) and the Thai index price IP(1),
are defined for the time horizon [0,7] where T > 0 and are defined on a complete
probability space (&, F, P). Then the price processes of the TFB stock and the index are
stochastic processes defined as SP(r) and /P(#), respectively. 1f we only consider the first
two moments of the random variables, they become elements of L2(P). SP(?) and IP(1) are
assumed to follow Geometric Brownian motion with drift. The discrete version is given

in equations (1a) and (Ib).
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ASP(t
SP(S‘)) = p At +O AW, (1a)
AIP(t
IP(E)) =it At +6 AW, (1b)

where ggp and yyp are the drift terms, ogp and oy are the volatility terms, and
AW (1) =SSPJE and AW, (1) = g”,JE . Egp, £p are joint normally distributed with
correfation y.

Let us consider the joint distribution of the discrete random variables SP(#) and [P(r).
We define the joint probability distribution function as P[SP; = sp;, IP;= ip)] = p; - q; for
i=l,u, kand j=1,.....,2. The marginal distributions are given as Psp|SP; = sp;] = p;
for i = l,......, k and PypliP;= ip) = g, for J =L £ If we define the first and second
moment of the joint distribution function as s, and m,, respectively, and the correlation
as ¥ , the maximum entropy probability distribution of this function is the solution to the

following problem (A1}.!

Problem (A1)
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where r; are the realized discrete values of a random variable which in this case is the
index return (for j=1,......£ }. The realized value for the underlying log relative TFB
stock return is f; (for i = 1,......, k). m is the first moment for the TFB retumns, 1, is the
second moment for the TFB returns, and ¥ is the correlation between TFB and index
returns. Solving provides us with the probability, p;, fori= 1., k

As shown in Rajasekera and Yamada (2001), this problem can be solved efficiently
when put into a Geometric Programming formulation (GP). In order to facilitate this
reformulation, we need to make the following change of variables.

) =P@,j) for j=L...0i=1,..., kand n=4k¢

(=N e+

This variable conversion allows us to convert the original bivariate problem into a
univariate problem. Under this new notation, the original problem (Al) can be

reformulated as (D1),

Problem (D1)
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where the matrix I'T is defined as the following.

[ R—m = em l | | n-m - n-m 1
2 2 2 2

n=my eor —m, | | | nimmy e orS-my
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I’ = 1-p e 1=py I | ] -5 -

] -z | | I - P — P2

: ’ : | | | : ) :
L1=ps = 1=y l | | I=pey - 1=p, i

Note that a redundant constraint is created when we apply the law of total probability

k
constraint to the problem, i.e. ZP,- =1 This constraint is eliminated from the matrix

=
I'T, thus the matrix is a full rank matrix, The matrix I'7 has 3 + (k1) rows and n=#k{¢
columns. This type of optimization problem is called a geometric program, and its Dual

is well known. The Dual problem of (D1) is given as the following problem (P1).

Problem (P1)

m
min g() = E P ton

i-1
5.t
t;>0, j=lewm

where m =number of rows in M7 = 3 + (k—1) = (4+2) and a; = (j, ) th element of I'7, for

By making the following change of variable, exp(A)=t;, j = 1,......, m, we can
convert problem (P1) into an unconstrained version. This significantly improves the
computational complexity of the problem. Let us define this unconstrained problem as

problem (P2) given below
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Problem (P2}

i=1 =

min G(A) = iexpliiljaﬁ]

5.1

iy J=le.,m uwnconstrained

Because the objective function of problem (P2) is a convex function, the first duality
theorem of geometric programming allows us to obtain the solution for problem (Al)
from the solution of problem (D1} whose solution also can be obtained efficiently by the
solution to problem (P2). It turns out that if we define the solution for problem (P2) as

}LJ-*, the solution for problem (D1I) éj* can be obtained by the following formula.

exp[i Aay ]
- =
h) expl:i Ay J
i=1 =1

3
As a result, we are able to obtain the conditional distribution of the joint probability

distribution function of the stock index returns and the underlying stock price returns as

P[SF, =sp,IP, =ip ]
PG| H=PISP, =sp,|IP.=ip.]= . L fori=leunk j=lnd.
(] jy=PISF, =sp, |IP; =ip;] FUP, = 19,1 Jj

P .v j 5:‘- =+
Consequently, P(|j}=— ®&D A fori= 1k = L £

2P6N X8
=l j=1

In this paper we will compare how this distribution performs relative to the historical
probability distribution. Performance is measured against our benchmark distribution,
the implied probability distribution of the underlying TFB stock price returns. The
implied probability distribution js derived by employing returns implied from the Black-

Scholes based warrant pricing model.
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3 . Empirical Analysis

We examine a call warrant issued by Thai Farmers Bank in the Thai stock market
during the mid-1990s. The sample coincides with the early stages of the warrant market
in Thailand and thus allows us test to the effectiveness of the Entropy based pricing
model for emerging and less liquid markets. Daily data is gathered for the Thai Farmers
Bank warrant expiring September 30, 1999. We use daily data from January 1995 to
‘October 1995.

‘The implied price series is derived by applying the warrant pricing mode! developed

by Lauterbach, Schultz (1990).

N M
W=(——M__ _[(SP- My _pr(T-n 2
(N/e+ R ;e D+ WIN(d,) e T XN(d,)] (2a)
SP-N% e D. +(M/NW
In Eie Al ) +r(T —£)
d = X +cr T —t b
1 oy > (2b)

dy=d —oNT -t (2¢)

where W is the warrant price, SP is the underlying stock price, X is the exercise price, ¥
is the number of outstanding shares of stock, M is the number of warrants, @ is the
number of shares that can be purchased with each warrant, r is the risk-free interest rate,
T —t is the time until expiration, o is the standard deviation of the return of SP+(M/NyW
per unit time, M(d) is the cumulative normal distribution function evaluated at o, ¢; is the
time until the ith dividend is paid, and D; is the Bhat amount (per share) of the ith
dividend.

Firstly, the implied volatility is obtained by iteratively solving equations (2a)-(2c)
given the market warrant price. The implied volatilities are then used as forecasts to

obtain the implied undertying TFB stock price for the following day again using
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equations (2a)-(2c) in an iterative exercise. An implied return series is then calculated by
using this implied stock price series, Shastri and Sirodom (1995) show that the Cox
square root model performs marginally better than the above modified Black-Scholes
model. Yet, they conclude that the difference may not be economically significant. For
the purpose of this paper, we will assume the Black-Scholes model is correct to the first

order.

Table 1: Mean, Standard Deviation, and Correlation of Return Series

Panel A: Mean of Return Series

Date TFB Implied Thai Index
Stock Return ~ Stock Return  Return
January 23 -0.02 -0.02 -0.23
March 7 -0.02 -0.02 0.04
April 24 -0.03 -0.03 -0.11
June 8 0.34 0.34 0.59
July 21 -0.02 -0.02 -0.03
September 4 -0.20 -0.20 -0.21

Panel B: Standard Deviation and Correlation of Return Series

Date TFB Implied Thai Index Correlation
Stock Return Stock Return  Retumn
January 23 23.92 29.03 25.52 0.826
March 7 24.15 27.90 23.47 0.874
April 24 20.70 27.81 20.80 0.706
June & 25.70 19.41 2335 0.842
July 21 21.29 23.05 19.51 0.822
September 4 22.17 30.31 15.93 0.845

Mean and Standard Deviation are in percentage and calculated using thirty non-overlapping
trading days. Date indicates the beginning day for the sample. TFB (Thai Farmers Bank) and
index refums are obtained using daily closing prices. The implied return is obtained vsing prices
implied from the warrant pricing model. The correlation is between the TFB stock return and
Thai index returmn.
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The mean (first moment) and standard deviation (second moment) is estimated for
the historical underlying stock price (TFB) return series and Thai index return series for
six non-overlapping samples 30 trading days (Table 1). The mean, standard deviation,
and correlation between the TFB returns and index returns are used as inputs to derive
the maximum entropy distribution (MED}. The mean and standard deviation for the
return on the implied TFB price series is estimated over the corresponding sample in
order to obtain the distribution implied by the warrant prices and warrant pricing model.

This implied return distribution {IMP) will serve as a benchmark for comparison.

Table 2: Mean Squared Error of Distributions

Month MSE for MSE for
MED vs IMP HR vs IMP
January 23 0.0301 0.1306
March 7 0.0311 0.0741
April 24 0.1057 0.3415
June 8 0.4448 0.3421
July 21 0.3848 0.0281
September 4 0.0275 0.3451

MSE is mean squared error and is in percentage. MED is the maximum enlropy distribution.
HR is the distribution derived from 30 days of historical returns, IMP is the distribution derived
from return series implied from the warrant prices and warrant pricing model. All distributions
are compared over the same non-overlapping 30 trading day sample. Here we assume the IMP
distribution as the benchmark for comparison.

The MED is derived by using the 30 day historical underlying TFB return
distribution and the 30 day historical stock index return distribution. This is compared
with the implied return distribution derived from warrant prices and the warrant model
(IMP). The mean squared error is calculated to gauge the difference between the two

empirical distributions. We also obtain the mean squared error between the historical
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underlying asset return distribution (HR) relative to the distribution implied from the
warrant prices (IMP). The mean squared error for each non-overlapping period is
summarized in Table2. We find the MSE for the MED does not perform any worse than
the 30 day historical return distribution. The MED does not perform well in June and
July, however, it should be noted that MED and HR both performed relatively poorly in
June. Hence, we provide preliminary evidence that a MED based pricing model could be

effective in pricing options and related derivative instruments.

Notes

* The authors thank Jay Rajasekera for helpful comments and use of his code, and Lertsan
Tharapat for providing us with warrant pricing data,

(1} In depth discussion and overview of entropy optimization is found in Fang, Tsac. and
Rajasekera (1997). Applications of entropy optimization to option pricing include Buchen and
Kelly {1996), and Stutzer (2000).
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